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MULTI-LAYER SYSTEM

M.A. Sales-Cruz, E.S. Pérez-Cisneros and J.A. Ochoa-Tapia*

Depto. de Ingenieria de Procesos e Hidrdulica. Universidad Auténoma Metropolitana-Iztapalapa
Av. San Rafuel Atlixco 186, Col. Vicentina. C.P. 09340, México, D.F,

Abstract

An analytic solution for the dynamic diffusive transport in a multi-layer system has been developed. The partial
differential equations of the model are subjected to boundary conditions, which may be chosen as any function of the
time. The methodology followed here, exploits the simplicity of the separation of variables method and the
superposition concept and, an eigenvalue or Sturm-Liouville problem is generated. The computation of the
eigenvalues associated to the Sturm-Licuville problem is presented. The analytic solution is evaluated using three
different time functionality of the bulk fluid concentration. The results show that the type of time functionality at the
boundaries strongly affects the shape of the concentration profile inside of the multi-layer system. In some case, the
time functionality of the concentration does not lead 10 any steady state. The main advantage of the analytic solution,
when it is compared with that obtained numerically, is the lower CPU time used to evaluate the solution of the
problem with the same accuracy.
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Resumen

Se ha desarrollado una solucién analitica para el problema de transporte difusivo dinamico. Las ecuaciones
diferenciales parciales del modelo estin sujetas a condiciones de frontera que pueden ser seleccionadas como
cualquier funcién del tiempo. La metodologia seguida en ¢l presente trabajo explota la simplicidad del método de
separacion de variables y el concepto de superposicion y con esto se genera un problema de Sturm-Liouville, Fi
computo de los valores propios asociado al problema de Sturm-Liouville también es presentado. La solucién analitica
es evaluada usando tres funcionalidades de la concentracion del seno del fluido con respecto al ticmpo, Los
resultados muestran que el tipo de funcionalidad con el tiempo afecta fuertemente la forma de los perfiles de
concentracion dentro del sistema multi-capa. En algunos casos, la funcionalidad con respecto al tiempo de la
concentracién no conduce a un estado estacionario. La principal ventaja de la solucién analitica, cuando ésta cs
comparada con la obtenida numéricamente, es la reduccion en tiempo de CPU usado para evaluar la solucion del
problema con la misma exactitud.

Palabras clave: solucion analitica, sistema de capa mdltiple, transporte difusivo dindmico, problema de Sturm-
Liouville,

1. Introduction

1) they provide the correct trend of solution
for any numerical method, this is, they state
the reliability limits of the numerical
methods;

i1) they reveal clearly the importance of the
different parameters involved in the model,
and thcy are desired for intensive process
simulation tasks (i.e. computations involving
thousands of local and global mass and
encrgy balances).

Many of the transient models obtained
from transport phenomena principles are in
terms of partial differential equations
(PDE’s). In recent years, the rapid advances
in the computational area have promoted a
high development of the numerical methods
for the solution of partial differential
equations. However, despite the
improvements in the numerical technigues,
the analytic solutions of PDE’s can be very
useful, because:
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More about the convenience of analytic
solutions in comparison with numerical
solutions can be found in the work by
Lewellen et af. (1982).

Of vparticular interest for process
simulation is the solution of problems that
involve parabolic PDE’s that arise in the
modeling of dynamic separation processes
and in the representation of transient heat
transfer normal to a layered wall. This type of
models can be important to evaluate
separation schemes and heat transfer systems.
The exact solutions of the linear case of the
described problems have been obtained
independently by  Ramkrishma  and
Amundson (1974) and Mikhailov and Ozisik
(1984). The methodology to obtain the exact
solution presenied by Ramkrishma and
Amundson {1974) is based on the use of the
Sturm-Liouville operator. Their mathematical
formalism leads to an elegant solution, but
they do not show any case where their
analytic solution is evaluated. A similar
comment can be expressed about the work
presented by Mikhailov and Ozisik (1984).
The mecthodology of Ramkrishma and
Amundson (1974) has been  applied
successfully to formally solve problems of
diffusion in particles immersed in mixed
fluids (Gandek er al, 1989: Hatton et al,
1979. 1982; Hatton, 1985).

The objective of the present work is
to oblain an analytic solution tor the dynamic
diffusive transport in a system consisting of
two different layers subjected to boundary
conditions, which may bec chosen as any
function of the time. The methodology
followed in this work exploits the simplicity
of the separation of variables method and the
supcrposition concepl. Thus, an eigenvalue
or Sturm-Liouville problem is generated. It
should be noted that the analytic solution
obtained in this work is completely
equivalent to that found by Ramkrishna and
[nitial condition:
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Amundson (1974) and Mikhailov and Ozisik
(1984). However, the simplicity of the
methodology followed here allows a quicker
evaluation of the solution. In this work, the
analytic solution obtained is ¢valuated and the
calculation of the eigenvalucs associated to
the Sturm-Liouville problem is discussed.
Results  for three different  boundary
conditions sets are reported and compared
with the numerical solution.

2. Definition of the problem

2.1. Transient diffusion through a two layer
system

Fig.1 shows a film in contlact with two
well mixed tluids that have controlled solute
concentration. This film is composed by two
layers with different transport properties. The
transient diffusion problem for this system is

defined by the [following two parliaf
differential equations:
acy, . _
=%, -, lorO<x<yx, (1)
ot dx”
Y, TG ,,
o1 =Yy a2 forx <x<x, (2)

Boundary conditions:

atx=90

0 C‘\l-)n s - -
+ a; =k (€l = Chy. ). for >0 3)
atx=ux,

oCh : :

£ (20 T A
o=k (Cho—Chy ) fore=0 ()
atx = .’Cl
- : =— i _"__"', 0[" >
W ax P ax

al x=x C =K,C5,, fori>0 (6)
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Fig. 1. System formed by two layers with different transport coefficient that are in contact with two well

mixed fluids.

at t=0
G, = fi(x), para 0<x<ux, (7)
C3y = f,(x), para x, <x<x, (8)

A brief  explanation of  the
nomenclature is required due to the presence
of two phases and because an extension of
the solution considering N layers will be
attempted later. Therefore, the superscript (S
or F) indicates the phase to which the
concentration is referred, the subscript (i)
refers to the layer i in the multi-layer film S,
and finally the right-side subscript j indicates
the position x,. For example, Cj,; is the

solute concentration in the layer (1) of the
multi-layer film S, corresponding to the
position x,. In addition, we have designated
the solute concentrations in the bulk fluid

phases as ('.'(","}m y (?(’;),, respectively. The rest

of the wvariables are defined in the
nomenclature section.

Fig. 2 shows the expected profile for a
situation where the transport direction is from
left to right. By wusing the following
dimensionless variables:

X== (9)

The problem defined by Eqgs. (1-8) can
be written in dimensionless form as:

ab{(l] az(}’u} . )
— =0, for0<X <X, (10)
or oxX-
ablr'n ’32{/!(2_1 s
2 Yo oy’ for X, <X <1 (1)

Equations (10) and (11) must be solved
together with the following dimensionless
boundary conditions:

at X =0

+— =g (Uu; -U,,, ) for >0 (12)
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Fig. 2. Schematic diagram of the concentration profiles for a system with two layer in contact with two

fluids of controlled concentration.

at X =1
U, i
- 0)1’ ~a, (U, U, ), for c>0 (13)
at.¥ — X
Uy, =U,,, for £>0 (14)
at X = X,
Uy U
o3  forz>0 (15)
X °oX
and the initial condition:
atr=0
Uy, = 15, (X) for 0<X <X, (16)
U, = F(X) for X <X <] (17
All  dimensionless parameters  and

functions used in equations (10)-(17) can be
found in the nomenclature section. However,
it 1s nceessary to remark that, in Egs. (12)
and (13), {/,,,,, and £/, arc given by

[RE]

(2)=

60

- -t f
_ K, (*(nn__
CS

ref

Uy =

Uyee =— o

“ref

Where K, and K, arc the distribution

coefficient between the solid layer in contact
with the tluidd at x=0 and x=ux,

respectively.

3. Methodology of solution

The solution of the PDE’s, Eqs. (10)-
{11), together with the boundary conditions,
Eqs. (12)-(15) and the initial condition. Egs.
(16)-(17) requires a methodology that
allows, step by step, to obtain an analvtic
solution in a way that this procedurce could
be casily extended to a multi-laver system. In
general, the methodology to  solve
analytically the problem 1s based on the
expansion in terms of the cigenfunctions
generated by a Sturm-Liouville problem.

This problem s stated considering
homogeneous boundary conditions for the
original PDE problem. The main steps of the
method of solution are as follows:
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a) Perform the superposition
U :ﬁm + g, where the functions g,
may be any function which satisfy the

inhomogeneous boundary conditions [Egs.
(12)-(13)] for U,. This generates

homogeneous  boundary  conditions  for

U, but as consequence the PDE  are

transformed to inhomogeneous.

b) Apply the method of separation of
variablcs to the transformed partial
differential equations (inhomogeneous PDE

{or (:Fm), with homogeneous boundary
conditions, and obtain a Sturm-l.iouville

problem. The solution of the Sturm-Liouville
problem leads to a set of eigenfunctions ¢,
together with eigenvalues 4, .

¢) Solve the inhomogencous  partial
differential equations for U/, through an
expansion in terms of the eigenfuction ¢, .

By [erg X 1]

3.1. Superposition

In order to simplify the boundary
conditions of the partial differential
equations the following superposition is
introduced

Uy=U, +g, for i=12 (18)
Here the functions g, (X,7) are

chosen such that they satisfy  the
inhomogeneous boundary conditions of the
original problem for €/, . This requirement
docs not force the g, (X,r) functions to
satisfy the differential cquations. Thus, it is
possible to propose any function which
satisfy the inhomogencous part of Eqs. (12)-
(I5). A convenient proposition 1s the
following pair of lincar relations in X :

gu)(-'\/~ T)= ({][3):{4 - U(I)m)

_~+U“)U__,
o, + a1+ X (B, - D]+e, 8

azfxn[X-f— X, (B - ]')]Jr‘b’,a'2

0<X <X, (19)

Loy (X, 1) = (U(z)m - U(t)w)

These relations are similar to those
found if the original problem it is solved for

the casc in which U, and U, , are kept

constant. Replacing Eq. (18) into Eqgs. (10-
17). and the use of the g, functions, yields
the following problem for [mf(,.} :

Transformed partial differential equations:

e e
¥

o Al "
ol 0 ), ~ 08,

()
or oX - ar

for 0< X < X, (21)

_ +U(“w,
a, +a,a,[l+ X (B, - D]+ a,p,

X, <X <l (26)

ol

o . Uy 98

or Y —5:?(2 ar

for X, <X <1 (22)

Homogeneous boundary conditions:

T
ab”) _ =
a)(-_au I{H

forc>0 (23)

a X =0 +
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Wy -
at /Y = I —"-'a—}—‘ =4a, oS
for r >0 (24)
atX =X, U, =U,
for r>0 (25)
a0 U
atX=x, -——Q=_p O
ax oxX
for >0 (26)
Initial condition
at =0
Uy = F(X) — g0,(X,0)
for 0<X <X, 27
U = Fo(X) = g0y (X, 0)
for X <X <l (28)

3.2, Generation and solution of the Sturm-
Liowville problem

The Sturm-Liouville problem

associated with the functions (_ﬂfu) can be

obtained by applying the method of
separation of variables to equations (21)-
(26). where  for  convenience  the
inhomogeneous terms are cancelled.

If the experience of the reader allows
it, the Sturm-Liouville problem could be
obtained by inspection of the equations (21)-
(26). Otherwise, 1t may be obtained by
proposing  solutions of the form
Efm = @, (X)G(r), where it Is important to
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recognize that the time contribution is the
same for both layers. Therefore, the Sturm-
Liouville problem obtained for this case is:

Ordinary differential equations (ODE):

dzgo(l)n :

"“C}X—g =-4 13?1y

for 0<X <X, (2%
dzgp[ﬁjn 2

}/(2) W = _;l' (IJHQI)(E}H

for X, <X <1) (30}

Bounduary conditions

at X =0 +%:(z"g}m” 30
at X =1 - dj‘;" =y (32)
at X = X| D (13u™ P 2pm (33
at X = X,

The solution of the boundary valuc
problem defined by Egs. (29)-(34) renders
the eigenfunctions ¢,,,(X), ¢, (X) and

the cquations to find the cigenvalues 4,
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FEigenfunctions

a, .
@ (X)) =K, {Z—”sm(ﬂ,mnX)Jr cos(4 U)"X)J , for 0<X <X,
(N

sin[l amll- X)]
A

P (X) = Kmn[aﬁ +cod Ay, (1 —X)]] , for X, <X<1

(23

G
sinfA 5, (1- X
&, [ (2) ( 1)] +cos[l(,_,),,(1- X, )]
K. = ‘ "L{z)n
(i — .
sin{4 5,,) _
&y B LA cos(4 ) o sin(4 ,, X, ) +cos(4 anX1)
;"(E)H ;“{l)rl
1
K = -
(2 Sln()"‘ (2)")
oy —————+c08(1 3y,)

(2

Condition for the eigenvalues

{aﬁsin[i amll- X

/1 (2

a sin(A
A

(|)NX|)

{1

B, {a’ N 005[1 am(1- X, )] —4 (:z)nSin[’1 (1=, )]}{

) .
) 008 A2, (1- X, )| e, 008(4 ), X)) = 2, 8I0(A 1, X )} +

+cos(4 ), X )} =0

(33)

(36)

(37)

(38)

(39)

(40)
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A consequence of obtaining the Sturm-
Liouville problem is the orthogonality of its
solutions, this 1s, the orthogonality property
of the eigenfunctions. In this case, the
Orthogonality condition is

B

n

2y

A
‘L ga{l]!rqou)de—i_ le,]‘;o(E}n‘;o(?.]md‘Xv:O

for m=n 41

The deduction of this equation is
similar to that obtained for the solution of a
Sturm-Liouville problem in a homogeneous
medium. However, in the case of multiple
layers the interfacial conditions are involved.

3.3. Solution of the inhomogeneous problem
for (ﬂfm

The solution process starts with the
expansion of U, and the inhomogeneous

part of equations (21)-(22) in terms of the
eigenfunctions, that is

U,=>.C(0)p,, for i=12 (42a)
n=I1

g, &
—%ZZAH(T)QDU)” for i=1,2 (42b)
T r=|

The expressions for (jf“.) satisly the
homogeneous boundary conditions given by
equations (23) to (26), but not the differential
equations (21) and (22). This fact will bc used
to obtain the unknown time coeflicients
C (7). The coefficients A4,(r) are obtained
through the application of the orthogonality
condition, given by Eq. (41), to the equation
(42b). This produces:

1 {43)

Substitution of Egs. (42) into Egs. (21) or (22) and the use of Egs. (31)-(32) leads to a first
order differential equation for C (7}, whose solution is

T
(,‘"(f) = eXp(‘—)L fl)n 1-) ('111: (0) +J.exp(+/?' f])né’)Au (é’) dé’ {44)
0
The constant €, (0) is given by:
Y, ﬁ »t
J[FII)(X) - g(l)(X’O)]@(l)udX + 0 [Fm (X) - grzy(Xﬂo)]@grz)udX
2 Jy
(:H(O) = ° X, :]I [— (45)
2 B 2
J.Q?(l)ud‘X + l ';{){Z)HdX
0 AL X,
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This expression is obtained from the
initial condition given by Eqgs. (27)-(28), the
proposed solutions, Eqs. (42a), and the
orthogonality conditton, Eq. (41). At this
point, we have an analytic solution for the
original problem detined by Eqs. (10)-(17).

2, 9,,(0) dU,, _Bay e, () dU,,

4. Evaluation of the analytical solution

For the evaluation of the solution, it
is convenient to write the coefficients C, (0)

and A (7), given by Egs. (43) and (45), in
the following form

A = 46.
"(T) (“Z; d?,' (f; dr ( d)

. M-I, 00

(,'” (0) = !ln( ) 2:1( ) (46b)
where

1 (dou, )
2, = co?m(X.){Xl v (1~X.)}+f— —#-] (X80 + 5,0~ X))
(2) (N
X

1
+ P {ao ‘p(zl)u(o) +af (37(22),; (_1)} (47)
(hyn

_ U
Tin(0) = %~ @0 (0 + @B, 930 (V)] (48)

{1

1
{5,,(0) = [ao Py (DU (0)+ e, B @(2}11(1){}(2)3\:(0)];3— (49)

The term [, {0) has been restricted to
the case of Fi(X) = F,(X)=U,. The rest of
the formulas are general. To obtain the
equations (46)-(49), integration by parts
together with the boundary conditions given
by Egs. (31)-(34), have been used.

In Table 1 the specific expressions for the
coefficients C,(r) and A4 (r) for three
different functions of the dimensionless
concentration of the well mixed fluids in
contact with the end of the layers are shown.
It should be noted that the coefficients

(1w

C,(0) given by Eq. (46b) are the same as
long the mittal condition is U,. However,
the coefficients A4, (7}, given by Eq. (46a),
require the direct substitution of the time

derivatives of U, and U ,,,.
4.1. Eigenvalues computation

In Fig. 3 it is shown the algorithm to
evaluate the complete analytic solution. In
order to evaluate the required coeflicients, it
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is necessary to compute the eigenvalucs from
Eq. (40).

In the present work, the method of
Muller have been used to find the multiple
real roots of Eq. (40), this is, find the values
of the eigenvalues A, for each set of

X, and 8,

Table 2 shows the first seven roots or
eigenvalues of A, for different values of

@, and X =0.5, and g,=10.

parameters o, ., .

@, .

5. Results and discuossion

The values for the parameters used in
the evaluation of the analytic solution are
=10,y =10, X, =05, 7, =2, and

£, =10. Once the eigenvalues 4,

been determined, the expressions for U,

have

Vol 1 (2002) 57-72

and U(g)m

derivatives must be known to complete the
evaluation of the analytic solution. In the
present work the initial condition was fixed
as {/; =1 and three different time functions

as functions of time and their

for Uy, and U,,, have been uscd.

3.1 Cuse ]
The dimensionless concentration at
bulk phases U/ and U/,  are

the Iy (2pr
Thus, we have:

considered constant.

Uy = Uy =1
Uy = Uy, =2

and as consequence A, ()= 0.

(50)
(51)

[RRES

(2}

Table 1. Coefficients 4, (7} and C, (1) for three sets of fluid concentrations Uiy () and U, (7).

Case | U.,=U, and U, =U,
A,(1) 0
C A1) C,(0)exp(— imur)
Case I Unye =Uyy =0 exp(—p7) and Uy, =1, —c,exp(-p.1)
Au(r) a(} 4'9“)” (O) ﬁ] N 1;0[2]” (1)
—_—(7—' MO exp(—p,T)~ o7 My O, eXp(—pt, T)
C,(7) C, (0)exp(— A’{l)n
i o K,
—;:“:—'[e}{p( fu Z') C‘(p( ;"(I)n T)}
(N L
Ju? 4n 72
22 I ey~ 4t, t) —exp(—A2. T
;L(E]}” #2 [ p( )( 2 ) p( [1}e )}
Case 1l Upe =U,y and U, =U,, - o,sin(w,7)
/1”(_1-) ﬁ] lQ'(N ‘?7(2);4(]) '
— 0, G, COS(®, T)
s 0 i
G, (7) C,(O)exp(~47,,7)
w,o0,K,, 1.
ﬁ»—"—[@n“ cos(@, )+ @, sin(w,7) - A’ (3 EXP{— ﬁl.,,, )]

66




Sales-Cruz y col. / Revista Mexicana de Ingenieria Quimica Vol | (2002) 57-72

Step 1. Fix the dimensionless parameters &,,, @, X, Y B
Step 2. Solve Eq. (40) and find the eigenvalues 4, s

Step 3. Usc Eqs. (38) and (39) to evaluate K, and K, .

Step 4. Use Eq. (46b) to obtain €, (0).

Given the time 7 :

Step 5. Use Eq. {44) to obtain C, (7), for the specific boundary conditions {/,_ (7} and U,_ (7).
Given the position X :

Step 6. Evaluate g, (X, 7} or g, (X, 7) using Egs. (19) or (20)

Step 7. Use Lgs. (35)-(36) 1o evaluate ¢, (X} or @, (X).

Step 8. Evaluate U ,, using Eqs. (18) and (42a).

Fig. 3. Scquence of evaluation of the dimensionless concentration for a given position X and time 7.
The cigen values are function of the physicochemical parameters &, @, 7, and B and the

geometric parameter X . Steps 1 through 4 are independent of time, position and of the concentrations at
the ends of the layers.

Table 2. Eigen values as function of the Biot numbers &, and « . The rest of the parameters was kept
constantas X, =03, y,,, =2,and B, =10.

&, o, =0.1
A’(I)l /’I‘(l)E /’i’(l)ﬁ Z"(I)-’l j’(T).‘S A(I)G /1“(!}.7

0.1 0.542655 3.653414 7.579777 10.86589 1490612} 18.33004 22.07767

10 1.581771 5.069331 8.47392 11.71197 15,6003 18.83039 2262591

100 1.726318 5.60954 9.086742 1266536 16.55307 19.82057 23.82477
a,=10.0

0.1 1.941782 4.960962 8.72008 11.96736 15.61712 19.21222 22.6102

10 3.168221 6.073589 9.643738 12.63095 16.31502 19.66286 23.12891

100 3.421458 6.654249 10.34915 13.47666 17.3577 20.55433 2433621
o, =100.0

0.1 2075618 5.347884 9.197526 12,82708 16.30623 20.27395 23.33538

10 3.41227 6436911 10.18778 13.45381 16.99288 20.75325 27.96293

100 3712369 7.045245 11.02348 14.26765 18.12832 21.67424 2515356

Fig. 4 shows the results of the
evaluation of the analytic solution for this
case. The dimensionless concentration
profiles in both layers are presented as a
function of the dimensionless distance (X) in

increased the concentration profiles change
from a non-linear behavior with respect to
the position to a defined linear steady state.
In addition, it can be seen that the
concentration at the edges of the film change

the film and the dimensionless time (7). In
Figure 4, it can be noted that as the time ris

with the time until they reach their steady
state values.
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Fig. 4 Evolution of the dimensionless concentration profile for a system subject to the fluid constant

concentrations I/

:V;':JJ:?'*

e =1 and U
and 3, =10.

f 2w

It should be noted that, because of the
transport resistance offered by the fluid, the
steady state values at the ends of the film arc
different from 7, =1 and U,,=2. The
change in the slope of the profiles for both
layers (1 and 2) at X=0.5 is due to thc
differences hetween the diffusion
coefficients of both phases and the inclusion
of the equilibrium distribution coefficient,
which renders S, =10. Table 3 shows the

comparison between the numerical solution

= 2. Other parameters are a, =10, =10. X, =05,

of the problem (finite differences method)
and the analytical solution. It should be
noted in Table 3, that the error is null at the
initial condition (r=0), and when the
steady state has been achieved. Also, it can
be scen that the error decreases as the time is
increased. It is obvious that the computing
time used for the solution of the problem is
smaller for the case of the analytical
solution.

Table 3. Comparison of the concentration or temperature profiles and computing times between the

numerical selution and the analytical solution. The boundary conditions were kept constant: {J

(SR - l

and U/ ,,,, = 2.0. The parameter combination is @, =10,a, =10, X, =05, y,, =2, and f, =10.

Position X
T 0.25 .50 0.75
Num. Analytic Error Num. Analytic | Error Num. Analytic | Crror
0.000 1.000 1.000 0.000% ] 1.000 1.000 [0.000%] 1.000 1.000 ]0.000%
0.200 |1.560729 | 1.543920 | 1.089% {1.844744(1.833050|0.638%(1.892920|1.885115]0.414%
0400 [1.761317 | 1.754934 [0.364%11.944132(1.940976]0.163%(1.965206|1.963074]0.109%
0.600 1.794908 | 1.793294 [0.090% 11 958793]1.958042(0.038% [1.975619(1.975107}0.026%
0.800 |1.800269| 1.799912 [0.020% |1.961103]1.960940]0.008%|1.977256|1.97714310.006%
1.000 [ 1.801121] 1.801047 |0.004% [1.961469]1.961436(0.002%{1.977515|1.977492:0.001%
Est. Esta | 1.801282 | 1.801282 [0.000% [1,961539|1.961539]0.000%11.977564|1.977564]0.000%
CPU  [Numerical Solution 69 s
time |Analytic Solution 4s
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3.2 Case 11
The dimensionless concentration at the
bulk phases U, and Uy, are the

exponential functions of the dimensionless
time given by

Uy = 1—exp(-107)
Uagyw =2 —exp(-107)

(52)
(53)

The values for the parameters a,,«a ,
X,. ¥ @, and B, used in the evaluation of

the analytic solution are the same as for case
L. In this case both concentrations, at the bulk
of the fluid phases change continuously with
time until they reach a constant value for
T>>1.

Fig. 5 shows the results of the
evaluation of the analytic solution for this
case. It can be noted two different behaviors
of the profiles. As the time 7 is increased the

Vol. 1 (2002) 57-72

concentration profile in the layer 1 decreases
and it changes from a parabolic behavior
with respect to the position to a defined
hinear steady state. On the other hand, for the
layer 2, 1t can be secn that the concentration
profile is linear and it continuously increases
as time is increased. It is interesting to note
that for short times (r=001) the

concentration in the layer 2 remains constant
and the effect of the equilibrium and the
diffusion coefficients is not observed. The
steady state profiles are reached at 7=0.7.
As in case I, it can be scen that the
concentration at the edges of the film change
with the time until they reach their steady
state values. Because of the transport
resistance of the fluids the stcady state
values at the ends of the fluids are diflerent
from U, =1 and U,, =2.

2.0 S ————

. fﬂn,ﬂww--’“-"n
1.8 N /

- 1-7\"’*9} Ol(j ............................... —
1.6 M,\ e R —

J ,}& b . -~

i & e 0.05
14 e P

. //, e

R R 1
» ) A S .
1o S e |
il 7 £=10°
e 4_-/(}.:“

0.8

1
06/
04 ¥ T T T T T T

0.0 0.2 04 0.6 0.8 1.0

X

Fig. 5 Evolution of the dimensionless concentration profile for a system subject to the fluid variable

concentrations U, =1—-exp(-107) and

Uye =2 —exp(-107).

Other parameters are

ay=10,a, =10, X, =05, 7,,,=2,and §, = 10.
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3.3 Cuase Tl

The dimensionless concentration at the bulk
phase U, is considered constant and U, 1s

a periodic function of the dimensionless
time. Thus, we have:

Uy =U, (54)

{1

Uipye =Uyy —oysin{m, 1) (55)

{2z

The values for the parameters «,, o, .
X{, 7 and B, used in the evaluation of
the analytic solution are the same as for case
[ and o,=1, @,=1. This type of
functionality indicates that the concentration

at the bulk U, change periodically with

the time.

Fig. 6 shows the rcsults of the
evaluation of the analytic solution for this
case. It should be noted that in this case a
steady state i1s not achieved. However, two
different behaviors of the profiles can be
noted. At the beginning, when the time ris
increased, the concentration profile in both
layers goes up. Latter, when time is large
cnough, the concentration profile decreases.,
this behavior is a consequence of the
periodic nature of the bulk concentration of
the fluid in contact with layer 2. It can also
be seen that for a large time (z=15) the
conccntration in the layer 2 remains constant
and the effect of the differences in the
diffusion coefficients and the equilibrium
constant is not observed.

0.0 0.2 04

0.6 0.8 1.0

Fig. 6 Evolution of the dimensionless concentration profile for a system subject to the fluid
concentrations U, =1 and U, =2 —sin( 7). Other parameters are o, =10, =10, X, =05,

7, =2,and B, =10.
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Conclusions

An analytic solution for the transient
diffuston problem for a two-layer system has
been developed.

This solution has been obtained by
using the superposition concept and the
application of the method of separation of
variables, The main advantage of the
analytic solution, when it is compared with
that obtained numerically, 1s the CPU time
used to evaluate the solution of the problem
for the same accuracy. This fact, confirm the
value of having an analytic seolution in
problems concerning intensive simulation
tasks. In this work three different
expressions for the concentration of the well
mixed fluid phases U and U,,, have

(1)
been considered. The results show that the
type of time functionality for U, and

Uy, will  affect  the shape of  the

concentration ({) profile inside of the multi-
layer system. In some case, the effect of the
fluid concentration functionality will not
lead to a steady state (case III). The different
paramcter values used in the evaluation of
the analytic solution were chosen such that
they cover a wide range of real conditions. It
should be pointed out that the methodology
of solution for a dynamic diffusion in a
multi-layer problem presented in this paper,
could be exploited for systems where
chemical reactions of zero order may occur.
Currently, an extension of the analytic
solution is being carried out in the study of
the time dependence of the global mass
transter coefticients.

Nomenclature

A,(r) = Function defined in Eq. (46a),
dimensionless.
C,(r) = Function defined in Eq. (44),
dimensionless.

C'(‘f);- = Solute concentration in layer i at

iti 3
position X, , mol/m-.

C{f” = Solute concentration in fluid phase in
contact with layer / at positionx,,
mol/m3.

C,:,f =Reference concentralion of solid fase,
mol/m3.

"f/“) = Diffusion coefficient of material i, m2/s.

J;(x) = Initial condition distribution at layer i,
mol/m3.

F(X)= Dimensionless initial  condition
distribution at layer , mol/m3.

&= Dimensionless function that satisfy the

non-homogeneous boundary conditions.
= Equilibrium distribution coefficient

ey
between the two  solid  layers,
dimensionless.

K., = Dimensionless constant in eigen
function @, (X), Eqs. (38)-(39).

K, = Distribution coefficient between the
solid and the fluid at x,, dimensionless

k;,  =Film fluid mass transfer coefficient at
Xy, m/s,

{,,(0) = Function defined by Eq. (48),
dimensionless.

1,,(0) = Function defined by Eq. (49),
dimensionless.

of = Denominator in Eqgs. (46),
dimensionless.

! = Time, s.
U, = Dimensionless concentration in layer
(?). Eq. (9).

U, = Dimensioniess bulk fluid concentration

that is in contact with layer i,
U= Dimensionless concentration function

obtained by the solution of
homogencous boundary value problem.
X = Dimensionless position.
Position, m.
Thickness of layer i, m.

Lallia
I

7
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Greek letters

o, = Fluid Biot number at x,,,

ko x, | Ko, -

o, = Fluid Biot number at x,,
kyx, I Ky,

B, = permability ratio of solid layers,
7 O

iy Keg I %y

Yo = Diftusion coefficient ratio,
e

Ty %, -

g = Dummy variable, dimensionless.
)L(,.) = Eigen value, dimensionless.

T = Dimensionless time.

Po = Eigen function, dimensioniess.
Subscripty

i = Indicates material layer.

0 = Initial condition

o0 = Bulk fluid phasc.

Superscripts

Ay = Solid

F = Fluid
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